論 文

# 衛星画像と数値表層モデルを用いた 海岸堤防抽出手法の提案

# Proposal of Identification Method for Coastal Dike Distribution using Satellite Images and Digital Surface Models

熊野 直子\*・川嶋 良純\*\*・箭内 春樹\*\*\*・田村 誠\* 横木 裕宗\*\*\*\*・桑原 祐史\*\*\*\*

# Naoko Kumano, Ryojun Kawashima, Haruki Yanai, Makoto Tamura, Hiromune Yokoki and Yuji Kuwahara

要旨:気候変動に伴う災害の激甚化・海面上昇による浸水域の把握は喫緊の課題である。特に、浸水域の把握 に際して、海岸地域における堤防の有無を考慮する必要があるものの、全球を対象として均一な調査基準に基づ いた堤防データは整備されていないのが現状である。そこで、本論では堤防の特徴を数値表層モデルに組み合わ せて堤防抽出支援情報を生成し、画像判読を併用する堤防抽出方法を提案した。さらに、国内外のテストサイト を設定し、堤防抽出方法の精度検証を行った結果、地形的特徴が捉え易い領域では70~80%の抽出精度が得られ た。

# キーワード:堤防,画像判読,DSM,氾濫域

# 1. はじめに

IPCC 第5次評価報告書<sup>1)</sup>によると,将来の気候 変動に伴い海面水位の上昇,大雨の頻度や強度の 変化,熱帯低気圧の強度が増加するなどの気候変 動に伴って,沿岸域では高潮・高波による災害増 加が懸念されている。

このような中,沿岸域における気候変動影響評価に基づく浸水域の把握が試みられてきたものの, 全球規模を対象とした先行研究の多くは,データの公開性と精度の均一性の問題から堤防・護岸の 情報が十分でない中で沿岸域の浸水影響を評価してきた。例えば,Fankhauser<sup>2</sup>),横木ら<sup>3</sup>,四栗ら<sup>4</sup>)は,地形情報を考慮して上昇する海面水位より低い標高値は全て浸水するとして全球での浸水域 を推計した。また,丸山・三村 5は,一人当たり GDP と人口密度の関係から地域毎の防護水準を 仮定して海面上昇と高潮による浸水影響を評価し た。Hinkel ら 9は GDP の高さで国を選別し,全て の浸水箇所は海岸堤防が設置され,海面上昇量・ 国の経済レベルに応じて防護されているとして浸 水域を予測した。このような結果から,堤防位置 が明らかになれば,浸水域の予測精度向上に繋が ると言える。現状では,堤防の位置・構造様式・ 高さ等を全球均一の精度で公開したデータは存在 しないことから,全球をほぼ網羅して観測してい る数値画像を応用し,堤防データを抽出する方法 を確立することが有効になると考えられる。

本論では、全球における海岸堤防抽出方法を確

\* 非会員 茨城大学地球変動適応科学研究機関,\*\* 正会員 国際航業株式会社\*\*\* 学生会員 茨城大学大学院理工学研 究科都市システム工学専攻, \*\*\*\* 正会員 茨城大学工学部都市システム工学科, \*\*\*\*\* 正会員 茨城大学広域水圏環 境科学教育研究センター 立し,実用に先立って抽出精度を把握することを 目的としている。全球の海岸を対象とする場合に は,地形や構造上のパターンが複雑になるため, 判読や関連する支援情報を用いたとしても完全に 抽出することが難しい。抽出する対象を,海岸堤 防に限定することで,堤防の構造的特徴と位置を 絞り込むことができるため,ある程度の精度と実 用性を見出せると考えた。

以上の着想から,既存の堤防周辺の標高分布を 用いて堤防の特徴を活かした抽出支援情報を作成 し,この支援情報を画像判読結果に適用し,全球 規模の海岸堤防データ抽出手法を提案する。この 手法を,日本における海岸堤防データと比較・検 討することで,その精度検証を行う。加えて,全 球展開の一事例としてベトナム北部紅河デルタに 提案手法を適用し,本論の成果と適用可能性を議 論する。

## 2. 本論の構成と範囲

## 2.1 本論の構成

本論の構成を図-1に示す。本論における提案と 分析は4つの章に分かれる。まず、3章では、各 国の堤防データの整備と公開状況を調査し、 衛星 画像や各種地理空間情報を用いて堤防データを生 成する意義を明確にする。その上で、本論で用い る情報によって対象とする堤防の形態について詳 述することにより, 生成する堤防データの扱いを 明確にする。4 章で詳述するが、本論で提案する 堤防データの抽出方法は、①DSM (Digital Surface Model) を用いて生成した海岸線沿いの傾斜区分 図, ②衛星画像の判読による確認, の2つの過程 から構成されるものである。続く5章と6章は提 案方法の検証結果を取りまとめるものである。5 章では抽出精度を定量的に議論するために、茨城 県沿岸部および伊勢湾・三河湾を対象として提案 方法の効用と限界について考察する。6 章では画



像撮影地点が把握されているベトナム国紅河デル タにて当手法の適用可能性を検証する。一連の研 究成果を最終章にて議論する。

## 2.2 使用データと研究の範囲

本論では、全球を対象とした堤防位置地点の抽 出を可能とする方法の提案を目指している。それ ゆえ、全球を網羅した衛星画像が必要となり、下 記のデータを用いた。

1) ALOS World 3D7)

堤防データ生成の支援情報として,ALOS World 3D(以下,AW3D)を用いて傾斜区分図を生成した。 AW3Dは,JAXAの有する陸域観測技術衛星「だいち」に搭載されているパンクロマチック立体視 センサによって生成されたDSMである。DSMと は,標高データに地表面とその上にある構造物や 樹木を含むデータである。使用する30mメッシュ データは5mメッシュのDSMデータを元に作成 されたものである。表-1にその詳細を示す。

手法開発の最終目的は、全球を対象とした海面 上昇を考慮に入れた氾濫解析を行うことにある。 このため、堤防の抽出精度やメッシュの細かさと いったデータ品質については全球で同じデータの 使用が望まれる。さらに、作業量を考慮すると、 メッシュサイズ 5m を用いた場合には膨大な量の 処理を伴うとともに、全球を網羅したデータが存 在しない。そのうえ、30m メッシュは無償提供さ れていることも実用上の利点である。以上の点を 勘案し、30m 分解能の DSM を用いた。

#### 2) Google Earth<sup>8)</sup>

既に画像のモザイクや幾何学的歪の補正処理が 施されている画像ビューワツールとして Google Earthを用いることにしGoogle Earthと地理情報シ ステムである ArcGIS と組み合わせた。ArcGIS の ビューワウィンドの背景画として Google Earth の 衛星画像を表示し,後述する堤防判読のための判 読キーに従い,画像判読にてポリライン形式で堤 防データを生成した。

#### 3)数值地図 25000<sup>9)</sup>

国土地理院発行の数値地図 25000 を,堤防の抽 出精度を評価するために用いた。ここでは堤防の 基準値として,数値地図 25000 上に示されている 海岸線沿いの土堤と擁壁を用いた。土提は土砂を 積み上げ,その断面が台形状のものであり,高さ 3m 以上,天端幅 5m 以下かつ長さが 75m 以上の ものが示されている。また,擁壁とは,勾配1:1 より急な壁状の構造物であり,高さ 2m 以上で長 さ 75m 以上のものが示されている。

4) ベトナム国ハイハウ海岸の現場画像

GPS 機能付きカメラを用い, jpeg 形式の Exif に 撮影地点の緯経度情報を含む堤防画像を準備した。 撮影年次は 2011 年~2012 年であり,使用した Google Earth 画像が 2015 年撮影のものである。堤 防建設は 2015 年以降も継続していることが確認 されているため,本論での抽出精度は厳しめの評 価(安全側の評価)となる。

## 2.3 研究対象とする海岸堤防

本論では海岸堤防が対象である。堤防は裏のり のある構造物で、元の地盤を嵩上げしたものを指 す10)。一般的な堤防は図-2に示すとおりである。 その外形的な特徴から、傾斜提は表のり面の勾配 が1:1より緩く、特に1:3以上に緩いものを緩傾斜 提という。1:1より急勾配な堤防は直立提とみなさ れる。緩傾斜提・傾斜提は堤防に多く見られ台形 型断面を特徴とする。ここでは傾斜提・緩傾斜提 の両方を傾斜提とみなす。直立提は設置するのに 必要な面積が少なく,係船護岸として併用できる ため、都市部の港湾地域などによくみられる壁型 の堤防である11)。また、堤防を道路や鉄道などの 構造物の基礎の一部に活用している場合もある。 そこで、数値地図25000を元に、表のり面の勾配 から, 土提箇所の堤防を「傾斜提」, 擁壁箇所の堤 防を「直立提」とした。さらに、人工堤防に加え、

表 1 ALOS World 3D 数值情報

| ALOS World 3D<br>(全球高精度デジタル3D地図) |                              |  |  |  |  |
|----------------------------------|------------------------------|--|--|--|--|
| 衛星                               | だいち                          |  |  |  |  |
| 使用センサ                            | パンクロマチック立体視センサ               |  |  |  |  |
| データ取得期間                          | 2006~2011年                   |  |  |  |  |
| 水平解像度                            | 5m(正射投影画像 2.5m)              |  |  |  |  |
| 高さ精度                             | 5m(目標)                       |  |  |  |  |
| 公開データの解像度                        | 5m/30m/90m                   |  |  |  |  |
| 使用データ                            | 標高DSM(Digital Surface Model) |  |  |  |  |



沿岸からの浸水を抑制する機能を有する海岸土 提・海岸砂丘等の自然堤防も一部含まれる。

# 3. 堤防データ公開状況と本論の意義

堤防データは、海水面の変化による陸域への浸 水影響をシミュレートするために必須のデータで はあるが、著者らが2017年1月現在、「全球規模」 を「同じ調査レベルで整備」したデータを条件に 可能な限り調査したが存在しなかった。いくつか の国の公開状況を調査し、表-2にまとめた。まず、 日本<sup>12)</sup>では、堤防の長さと大まかな位置情報を公 開しているが堤防ごとの詳細な構造や高さといっ たデータは公開されていない。アメリカ合衆国で は、US army<sup>13)</sup>が全国土の河川堤防と一部の海岸堤 防に関する大まかな位置情報を公開しているもの の、詳細なデータは公開されていない。また、大 韓民国では堤防データの公開は行われていない。

したがって、堤防データの生成には衛星画像と 衛星 SAR より生成した DSM が有効であろう。対 象とする堤防はコンクリート・植生など様々な被 覆が用いられ、かつ、その形状も様々である。こ のため、画像のみを用いた判読では「見えない」 もしくは「見落とし」が多くなるものと考えられ る。そのうえ、全球で均一の基準で作業を行う場 合、作業時間が膨大になる。これらの点を補い、 作業を支援するために堤防の形状や設置場所など の特徴を組み込んだ抽出方法を提案した。

# 4. 堤防抽出支援手法と精度評価方法の提案

提案する堤防抽出手法を図-3に示す。本論では, 全球を対象とした堤防抽出作業を前提とした抽出 手法を目指すため,堤防抽出支援情報に加えて, 画像判読による抽出作業を併用した抽出手法を提 案する。堤防抽出支援情報を用いることで,①堤 防の位置をある程度絞り込んだうえで画像判読が 行えるため効率的に抽出作業が行える,②画像判 読のみでは抽出し難い植物で覆われた堤防や土を 積み上げた堤防なども地形特徴から推定している ため容易に判読できる,③作業時の単純な見落と し防止となる,といった効果が期待できる。以下 では,本手法の詳しい内容について述べる。

#### 4.1 堤防抽出支援情報の作成

DSM から読み取れる標高値と傾斜角に注目し て堤防位置を推定する方法を提案する。図-4に注 目すると,堤防を含む領域は嵩上げされているの で,周囲よりも標高値が高い(③)。さらに,堤防の 前面(海側)は低地であり天板にかけて傾斜角が大 きくなり(②'),背面(陸側)は標高値が高い場合や, 樹木や構造物が存在する場合が多いため,堤防付 近のセル(③')は前面(②')と比べて傾斜角が小さ くなる。この特徴を活かしたセル(要素)を抽出す る。図-5 はその概念図である。対象セルとその 8 つの近隣セルの高度を比較したとき,距離に対す るそれらの最大高度変化が,対象セルからの最も 急な傾斜角とする。

傾斜角
$$\theta = \tan^{-1} \sqrt{\left(\frac{dz}{dx}\right)^2 + \left(\frac{dz}{dy}\right)^2} \times \frac{\pi}{180}$$
 (1)

ここで *dz/dx*; 東西方向への差分 *dz/dy*; 南北方向 への差分である。このプログラムは堤防位置推定 箇所を横方向と縦方向の2方向から探索を行って いるため, あらゆる向きの堤防を抽出できる。

本手法は周囲の構造物や樹木よりも巨大な堤防 を想定しており、周囲の構造物と比較して小さな 堤防は抽出できない。特に、堤防の前面に同じ高 さの樹木や構造物がある場合には判読が難しい。 また、これらの地形的特徴は、山岳地帯の尾根線 や都心部のビル群などにも当てはまるため、目視 による画像判読を加える。そこで堤防位置を過去 の高潮・潮位偏差から推定する範囲を標高値と汀 線からの距離により限定することで、抽出精度の 向上・作業時間の短縮を図った。近年発生した災



表 2 各国の堤防公開状況

害をうけて、アメリカ合衆国・日本等では多重防 護が推進されている<sup>14),6</sup>ことから、既往の浸水領 域から抽出範囲を参考にした。高潮・潮位偏差は、 伊勢湾台風時に名古屋港で観測された 3.45m<sup>15)</sup>、 潮汐による潮位偏差は、カナダのファンディ湾で 観測された 14.00m<sup>16</sup>, IPCC に報告された 21 世紀



末の海面上昇量の予測値は最大 0.82m<sup>1)</sup>である。こ れら合計は 18.27m であり,この値以下の領域を 網羅できるように標高値 20.00m 以下の地域に対 象とした。また,1959 年の伊勢湾台風の浸水範囲 <sup>14)</sup>を分析したところ,汀線より約 14km の地点ま で浸水が及んだため,15.00km の範囲を適用した。 この範囲は取り扱うデータ量が大きくなるが,見 落としが無いように安全側に設定した。

#### 4.2 画像判読による堤防抽出

作成した堤防抽出支援情報を用いて,Google Earth<sup>8)</sup>や Arc Map<sup>17)</sup>のベースマップ等の衛星画像 から,画像判読により堤防の抽出を行った。まず 茨城県海岸部を数回にわたるプレ画像判読を行っ た。異なる土地被覆の各海岸に注目点や抽出精度 を確認し,堤防が判読できた事例を集積した。そ の結果,表-3に示す6項目を判読キーとした。

#### 4.3 抽出事例

図-6は、愛知県西尾市の沿岸部を例とした堤防 抽出結果である。図-6(2)の青色で示した点が堤防 抽出支援情報である。画像下部に見られる線状の コンクリート構造物上に堤防抽出支援情報が確認 でき、この構造物は堤防である可能性が高い。さ らに、この情報をキーとして画像判読を行うと構 造物の海岸側と内陸側の色調の違いが確認でき、 この構造物は堤防だと判断できる。このように支 援情報を助けとして画像判読によって堤防の終 点・始点を見極めることにより、図-6(3)のような ポリラインを引いて堤防データを生成した。

#### 4.4 堤防抽出の精度評価方法

国土地理院が発行している数値地図 25000 上の 土堤と擁壁を堤防の基準値としてポリラインデー タを作成した。基準値のポリラインデータを含む セルを「堤防のセル数」,抽出した堤防のポリライ ンデータを含むセルを「抽出したセル」として抽 出率を求め,精度評価を行う。その概要を図-7 に 示す。15 秒メッシュのスケールで比較し,(2)式か ら抽出率(%)を求める。

抽出率(%)= 抽出したセルの数 堤防のセル数 ×100 (2)

# 5. 茨城県沿岸と伊勢湾・三河湾を事例とした堤防抽出手法の評価

# 5.1 対象地域

茨城県沿岸部と伊勢湾・三河湾を対象に堤防抽 出手法を評価した。海岸線の概要<sup>18),19),20)</sup>を図-8 と 表-4に示す。茨城県の海岸は太平洋に面しており, 海岸線が線形に近く,2011年の東日本大震災時に は津波による被害を受けている。一方で,伊勢湾・ 三河湾は,知多半島と渥美半島を有しており,そ の海岸線が複雑であり,1959年の伊勢湾台風での 高潮によって甚大な被害を受けた。名古屋港付近 は低位地帯が大きく広がっており,中京工業地帯 が占めている。以上のように,両海岸線とも,過 去に海からの浸水によって被害を受けていること, 都市部が海岸線に集中して堤防が整備されている こと,さらに地形的な特徴を鑑みて,2 つの海岸 線を選定した。

#### 5.2 結果と考察

図-9 と表-5 は抽出結果である。堤防抽出支援情 のみでの抽出率は、茨城沿岸部では 58.4%であり、 伊勢湾・三河湾は 17.8%であった。これは、伊勢 湾・三河湾は工業地帯であり、高い工場等に覆わ

| 表 3 画像判読の判読キー一覧 |             |                                   |  |  |  |  |
|-----------------|-------------|-----------------------------------|--|--|--|--|
|                 | 立地          | 汀線付近で背後地に人家・田畑・工場がある。             |  |  |  |  |
|                 | 形状          | 汀線に沿って線状・帯状である。                   |  |  |  |  |
|                 | 表面の色調       | コンクリート・植物・土などに覆われており、のり面方向色調が異なる。 |  |  |  |  |
|                 | 道路,鉄道などの構造物 | 道路・鉄道など基礎になっている場合がある。             |  |  |  |  |
|                 | 階段          | 堤防の天端に上がる階段が設置してある。               |  |  |  |  |
|                 |             | 付近より標高が高いため、周囲に影が生じる。             |  |  |  |  |

0 0.2 0.4 (単位:km)



|            | 茨城県沿岸部                                                                                         | 伊勢湾・三河湾                                                                                     |  |  |
|------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|
| 都道府県       | 茨城県                                                                                            | 愛知県                                                                                         |  |  |
| 海岸線長 194km |                                                                                                | 549km                                                                                       |  |  |
| 堤防のセル数     | 是防のセル数 322 1227                                                                                |                                                                                             |  |  |
| 港湾         | 鹿島港【重要港湾】<br>茨城港【重要港湾】<br>(大洗地区・水戸地区・日立地区)<br>その他 地方港湾:5箇所<br>(内2箇所のみ沿岸部沿い)<br>茨城沿岸部沿いの港湾 全6箇所 | 名古屋港【国際拠点港湾】<br>三河港【重要港湾】<br>衣浦港【重要港湾】<br>伊良湖港【避難港湾】<br>その他 地方港湾:11箇所<br>伊勢湾・三河湾沿いの港湾 全15箇所 |  |  |
| 主な災害       | 津波・東日本大震災(2011年)                                                                               | 高潮・伊勢湾台風(1959年)                                                                             |  |  |

れているにも関わらず,沿岸部の地形は平地であ り傾斜提を有しないためであると考えられる。画 像判読を含めると茨城沿岸部での抽出率は全体で 83.2%となり,伊勢湾・三河湾では 68.6%であった。 伊勢湾・三河湾における抽出率が低いのは,直立 提が多くを占めているからである。名古屋港・衣 浦港等と合計 15 箇所あるため,係船岸と併用で きる直立提が設置されていると推測される。この ような直立堤防は占める面積が小さく,また,コ ンクリートで覆われている場合が多く,周囲と同 化し影も見え難く画像判読がし難いため, 抽出率 が低下した。

堤防のセル(基準値)では堤防が存在しているに も関わらず、本手法では抽出漏れした事例を図-10 に示す。図-10(1)は茨城沿岸の傾斜提である。堤防 の周囲に生息している植物と同様の植物で覆われ ているため、判読は難しいが、図中の水色線を境 界にのり面方向に色調が異なる。図-10(2)は、茨城 沿岸の直立提である。堤防周囲が堤防と同じコン クリートで覆われているが、堤防沿いに影が確認 できる。この 28 セルを画像判読により抽出でき たとみなした場合、茨城沿岸の抽出率は約 91.9%



(1) 茨城県沿岸

図 9

(2)伊勢湾·三河湾 茨城県沿岸と伊勢湾・三河湾の抽出結果

|             |     |       | 相防地山支援陸却の7, 相防地山支援陸却」日相判害 |                 |        |        |
|-------------|-----|-------|---------------------------|-----------------|--------|--------|
|             |     | 堤防のセル | 堤防抽山又1<br>抽出したセル          | 度情報のみ<br>抽出率(%) | 地出したセル | 抽出率(%) |
| 茨城          | 傾斜型 | 178   | —                         | —               | 146    | 82.0   |
| 県沿          | 直立型 | 187   | _                         | —               | 161    | 86.1   |
| 岸部          | 全体  | 322   | 188                       | 58.4            | 268    | 83.2   |
| 伊勢迹         | 傾斜型 | 555   | _                         | _               | 447    | 80.5   |
| 倍<br>•<br>三 | 直立型 | 806   | —                         | —               | 517    | 64.1   |
| 河湾          | 全体  | 1227  | 219                       | 17.8            | 842    | 68.6   |

# 表5 茨城県沿岸と伊勢湾・三河湾の詳細な抽出結果



(1) 傾斜提 (茨城県沿岸)



(2) 直立提 (茨城県沿岸)

図 10 抽出洩れした人工・自然堤防の事例





(1) 傾斜型 (伊勢湾・三河湾) (茨城県沿岸) 図 11 抽出不可能な人工・自然堤防の事例







であった。つまり,画像判読に依存する結果となった。

次に、本手法では抽出不可能であった事例を図 -11 に示す。図-11(1)は、茨城県沿岸の傾斜提であ る。このように樹木に覆われた堤防ではのり面方 向への色調差がないため判断できない。図-11(2)は、 伊勢湾・三河湾の直立提である。堤防が周囲と同 じコンクリートに覆われており、かつ、影などが 確認できずに抽出されなかった。また、いずれの 堤防も周囲に高い工場等が分布しているため、堤 防抽出支援情報にも反映されなかった。

提案した堤防抽出プロセスでは,目視判読によ る見落としや堤防と地形の形状が類似していた際 の確認作業のために堤防抽出支援情報を用いた。 このため,堤防周辺の地形形状によっては傾斜角 に依存する支援情報の効果が低い場合があるが, 茨城県のように堤防の後背地に工場等の構造物が 少ない地域では支援情報による抽出率は総延長の 58%,画像判読を加えることによって 83%まで向 上した。ここで,目視判読による抽出作業を続け て行う場合,連続的な作業によって見落とすこと が懸念される。これらの点を勘案すると,地形の 傾斜角を支援情報として扱う意義があるものと考 えられる。

以上より,堤防抽出支援情報では茨城県沿岸部 と伊勢湾・三河湾で差があるものの,画像判読と 併せて検討することによって,60~80%の堤防が 抽出可能であることが確認できた。

# 6. ベトナム国紅河デルタ沿岸部を対象とし た堤防抽出事例

国外でも本手法が適用できることを,ベトナム 国紅河デルタ沿岸部を例に確認した。

#### 6.1 対象地域

紅河デルタはベトナム国北部に位置する亜熱帯 デルタ地帯である。これらのデルタ地帯はほぼ平 坦かつ,標高が 2~3m 程度の低地であるため,高 潮などの沿岸域災害に対して脆弱である(図-12)。 つまり,紅河デルタは南シナ海から発生した台風 の通り道であるため,高潮や洪水の被害が多い地 域である<sup>4,21)</sup>。こうした現状から,デルタ地帯は 後背地の住民や農地を守るため,堤防が整備され ている可能性が高いと考えられる。

#### 6.2 抽出結果

図-13(1)はベトナム国紅河デルタ地域ハイハウ 海岸での抽出結果,図-13(2)は現地調査の写真であ る。本手法を用いてベトナム国紅河デルタ地域ハ イハウ海岸では、支援情報のみで 71km、目視判読 を加えて108kmの堤防を抽出した。全抽出の66% を支援情報単独で抽出できた。図-13 に示すとお り,過去の現地調査と比較して,全11地点で堤防 が周囲よりも高いことを確認した。この地域は, 海外の支援によって大型の傾斜提が設置されてお り22),周囲が低地であるが故,これらの堤防が支 援情報のみでも抽出し易くなったと考えられる。 一方で,図-14(1)は紅河デルタ沿岸部における抽出 結果,図-14(2)は堤防がないと判断された領域の Google Earth 画像である。これらの領域は河口付 近に砂州を形成し、堤防が設置されてないと考え られる。海岸線は約 263km であるので海岸線の 41.1%が少なくとも防護されていると推定できる。

ベトナムのように低平地が多く周囲に構造物が 少ない海岸線では日本よりも抽出しやすいと推察 され,海外でも適用の意義があると証明された。

# 7. まとめ

堤防情報は沿岸域での浸水影響を把握するため に重要な要素である。本論では、DSM を用いた堤 防抽出支援情報を生成し、判読キーを用いた画像 判読を行う方法を提案し、その精度検証を行った。 ここで対象とする堤防は、採用した DSM が 30m







(2) Google Earthによる目視



という分解能を持つ以上,隣接する土地被覆との 混在を考慮に入れると数値表層モデルのみを用い た抽出は難しい。このため,衛星画像判読と組み 合わせ,抽出効果を確認するプロセスを確立して 行くことが重要であり,その精度は60%~80%と幅 を有する結果になった。一方,衛星画像を用いて 平面的な土地被覆を分類する際には,80%程度を 目安にすることが多い。鉛直方向の構造性を扱う 堤防を議論の対象とする点では,精度評価結果に 20%幅を持つが,全球を均一の堤防データが存在 しないなか,一定の精度を持つデータとして評価 できる。但し,本手法は全球を対象とした巨視的 なデータ処理での利用を想定したデータ生成手順 である。各エリアを対象としたデータ利用に関し ては,個別の地点における堤防の有無というもの がシミュレーション結果の良否に直接影響を与え るため,事前に分布位置を再確認することが良い と考えられる。

# 謝辞

本論は,環境省環境研究総合推進費 S-14 の支援 を受けて行われたものである。ここに記して,深 甚なる感謝の意を表する。

## 引用・参考文献

- IPCC: Climate Change 2013: The Physical Science Basis IPCC Working Group I Contribution to AR5, 2013.
- 2) Fankhauser, S.: Protection versus Retreat: The Economic Costs of Sea-Level Rise, Environment and Planning A, Vol.27, pp.299-319, 1995.
- 3) 横木裕宗・中村円・佐藤大作・桑原祐史・河宮未 知生:海面水位の季節変化を考慮した海面上昇リ スクの全球分布,土木学会論文集 B2(海岸工学), Vol.69, No.2, pp.I\_1271-I\_1275, 2013.
- 4) 四栗瑞樹・田村誠・熊野直子・増永英治・横木裕 宗: RCP・SSP シナリオに基づく全球沿岸域での 海面上昇による浸水影響評価, 土木学会論文集 G (環境), Vol.73, No.5, pp.I 369-I.376, 2017.
- 5) 丸山陽佑・三村信男:人口・経済成長を考慮した 気候変動に対する沿岸域の地球規模影響評価,環 境システム論文集, Vol.38, pp.255-263, 2010.
- Hinkel, J. et al.: Coastal flood damage and adaptation costs under 21st century sea-level rise, PNAS, Vol. 111, No.9, pp.3292-3297, 2014.
- AW3D 全世界デジタル 3D 地形データ: http://alosworld3d.jp/index.htm (2016.08.03 閲覧)
- 8)Google Earth: https://www.google.co.jp/ intl/ ja/e arth/ (2016.08.03 閲覧)
- 9)国土交通省国土地理院:数值地図 25000(CD-ROM), 2007.
- 10)日本沿岸域学会編:沿岸域環境事典,共立出版, pp.55,2004.
- 11)海岸保全施設技術研究会編:海岸保全施設の技術 上の基準・同解説, 2004.

- 12)国土交通省政策局国土情報課:国土数値情報 海岸保全施設データ,http://nlftp.mlit.go.jp/ksj/gml /datalist/KsjTmplt-P23.html (2017.8.20 閲覧)
- 13)US Army: National Levee Database, http://nld.usac e.army.mil/egis/f?p=471:1:0::NO (2017.8.20 閲覧)
- 14)仙台市:仙台市震災復興計画, 2011.11.
- 15)井口隆:伊勢湾台風災害の特徴,防災科学技術研 究所研究報告, Vol.75, pp.1-10, 2009.
- 16)McMillian, J. and Lickley, M.: The potential of tidal power from the Bay of Fundy. Society of Industrial and Applied Mathematics Undergraduate Research Online, Vol.1, No.1, pp.20-37, 2008.
- 17)Esri: ArcMap, http://desktop.arcgis.com/ja/arcmap/ (2017.8.20 閲覧)
- 18)茨城県:茨城県沿岸海岸保全基本計画,2016.
- 19)愛知県:三河湾・伊勢湾沿岸海岸保全基本計画, 2015.
- 20)国土交通省政策局国土情報課:国土数値情報 海岸線データ,http://nlftp.mlit.go.jp/ksj/gml/ datalist /KsjTmplt-C23.html (2017.8.20 閲覧)
- 21)USGS: GTOPO30, https://lta.cr.usgs.gov/GTOPO30 (2017.8.20 閲覧)
- 22)Nguyen, D. T., Takagi, H. and Esteban, M.: Coastal Disasters and Climate Change in Vietnam, Elsevier, pp.1-77, 2014.

#### 著者紹介

#### 熊野 直子(非会員)

茨城大学地球変動適応科学研究機関(茨城県水戸市文京区 2-1-1),2007年山口大学工学部社会建設工学科卒業,2012 年熊本大学大学院自然科学研究課博士後期課程修了,2015 年茨城大学地球変動適応科学研究機関研究員,現在に至る。 博士(工学),地盤工学会,土木学会,日本地球惑星科学連 合,各会員。

E-mail: naoko.kumano.fyewsha@vc.ibaraki.ac.jp

#### 川嶋 良純(正会員)

国際航業株式会社 (東京都府中市晴見町2-24-1), 2017年茨

城大学大学院理工学研究科都市システム工学専攻修了,2 017年国際航業株式会社技術サービス本部地理空間基盤技 術部デジタルセンシンググループ所属,現在に至る。修士 (工学),日本沿岸域学会,土木学会,日本リモートセンシ ング学会,各会員。

E-mail: ryojun\_kawashima@kk-grp.jp

#### 箭内 春樹(学生会員)

茨城大学大学院理工学研究科都市システム工学専攻修士 課程1年(茨城県日立市中成沢町4-12-1)。2017年茨城大学 工学部都市システム工学科卒業。日本沿岸域学会,学生会 員。

#### 田村 誠(非会員)

茨城大学地球変動適応科学研究機関(茨城県水戸市文京区 2-1-1),2004年東京大学大学院総合文化研究科修了,2009 年茨城大学地球変動適応科学研究機関准教授,現在に至る。 博士(学術),環境経済・政策学会,国際エネルギー経済学 会,アメリカ地球物理学連合,各会員。 E-mail: makoto.tamura.rks@vc.ibaraki.ac.jp

#### 横木 裕宗(正会員)

茨城大学工学部都市システム工学科(茨城県日立市中成沢町4-12-1),1989年東京大学工学部土木工学科卒業,2011年茨城大学工学部都市システム工学科教授,現在に至る。博士(工学),日本沿岸城学会,土木学会,日本サンゴ礁学会,各会員。

E-mail: hiromune.yokoki.hy@vc.ibaraki.ac.jp

#### 桑原 祐史(正会員)

茨城大学広域水圏環境科学教育研究センター(茨城県日立 市中成沢町 4-12-1), 1992 年東京理科大学理工学部土木工 学科卒業, 2015 年茨城大学広域水圏環境科学教育研究セ ンター教授(センター長),現在に至る。博士(工学),日本 沿岸域学会,土木学会,日本リモートセンシング学会 各 会員。

E-mail : yuji.kuwahara.rs@vc.ibaraki.ac.jp

# Proposal of Identification Method for Coastal Dike Distribution using Satellite Images and Digital Surface Models

Naoko Kumano, Ryojun Kawashima, Haruki Yanai, Makoto Tamura, Hiromune Yokoki and Yuji Kuwahara

**ABSTRACT** : Low-lying areas are most vulnerable to sea-level rises and disasters due to future climate change. In order to evaluate the actual inundation area, accurate and consistent elevation data and maps of dike positions in coastal areas are required. However, no such database is currently available on a global scale. The present paper proposes a method for generating a global dike distribution map using satellite images and digital surface models. To evaluate the effectiveness of this method, case studies were carried on coastal areas in Japan and Vietnam. The results indicated that an accuracy of 70-80% could be obtained in regions where topographic features were easy to identify.

**KEYWORDS** : Dike, Satellite images interpretation, DSM, Inundation area